Search any question & find its solution
Question:
Answered & Verified by Expert
If $A$ and $B$ are events of a random experiment such that $P(A \cup B)=\frac{4}{5}, P(\bar{A} \cup \bar{B})=\frac{7}{10}$ and $P(B)=\frac{2}{5}$, then $P(A)$ equals
Options:
Solution:
2263 Upvotes
Verified Answer
The correct answer is:
$\frac{7}{10}$
$\begin{aligned} & \text { Given, } P(\bar{A} \cup \bar{B})=P(\overline{A \cap B})=\frac{7}{10} \\ & \text { Since, } P(A \cap B)+P(\overline{A \cap B})=1\end{aligned}$
$\begin{array}{ll}\Rightarrow \quad P(A \cap B)=1-\frac{7}{10}=\frac{3}{10} \\ \text { Also, } P(A \cup B)=P(A)+P(B)-P(A \cap B)\end{array}$
$\begin{aligned} \Rightarrow \quad \frac{4}{5} & =P(A)+\frac{2}{5}-\frac{3}{10} \\ \Rightarrow \quad P(A) & =\frac{4}{5}-\frac{2}{5}+\frac{3}{10} \\ & =\frac{2}{5}+\frac{3}{10}=\frac{7}{10}\end{aligned}$
$\begin{array}{ll}\Rightarrow \quad P(A \cap B)=1-\frac{7}{10}=\frac{3}{10} \\ \text { Also, } P(A \cup B)=P(A)+P(B)-P(A \cap B)\end{array}$
$\begin{aligned} \Rightarrow \quad \frac{4}{5} & =P(A)+\frac{2}{5}-\frac{3}{10} \\ \Rightarrow \quad P(A) & =\frac{4}{5}-\frac{2}{5}+\frac{3}{10} \\ & =\frac{2}{5}+\frac{3}{10}=\frac{7}{10}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.