Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $A$ and $B$ are independent events such that
$P(A)=\frac{1}{5}, P(A \cup B)=\frac{7}{10}$, then what is $P(\bar{B})$ equal to ?
MathematicsProbabilityNDANDA 2013 (Phase 2)
Options:
  • A $\frac{2}{7}$
  • B $\frac{3}{7}$
  • C $\frac{3}{8}$
  • D $\frac{7}{9}$
Solution:
2772 Upvotes Verified Answer
The correct answer is: $\frac{3}{8}$
As A and B are independent event So, $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{5} \cdot \mathrm{P}(\mathrm{B})$
Now, $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$\frac{7}{10}=\frac{1}{5}+\mathrm{P}(\mathrm{B})-\frac{1}{5} \cdot \mathrm{P}(\mathrm{B})$
$\mathrm{P}(\mathrm{B})\left(1-\frac{1}{5}\right)=\frac{7}{10}-\frac{1}{5}$
$\frac{4}{5} \cdot \mathrm{P}(\mathrm{B})=\frac{1}{2} \Rightarrow \mathrm{P}(\mathrm{B})=\frac{5}{8}$
Now, $\mathrm{P}(\overline{\mathrm{B}})=1-\mathrm{P}(\mathrm{B})=1-\frac{5}{8}=\frac{3}{8}$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.