Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $A$ and $B$ are matrices and $B=A B A^{-1}$ then the value of $(A+B)(A-B)$ is
MathematicsMatricesVITEEEVITEEE 2016
Options:
  • A $\mathrm{A}^{2}+\mathrm{B}^{2}$
  • B $\mathrm{A}^{2}-\mathrm{B}^{2}$
  • C $\mathrm{A}+\mathrm{B}$
  • D $\mathrm{A}-\mathrm{B}$
Solution:
2798 Upvotes Verified Answer
The correct answer is: $\mathrm{A}^{2}-\mathrm{B}^{2}$
$\mathrm{B}=\mathrm{ABA}^{-1}$ (Given)
But $B=B A A^{-A}$
$\therefore \mathrm{ABA}^{-1}=\mathrm{BAA}^{-1} \Rightarrow \mathrm{AB}=\mathrm{BA}$ $\mathrm{Now}(\mathrm{A}+\mathrm{B})(\mathrm{A}-\mathrm{B})=\mathrm{A}^{2}-\mathrm{AB}+\mathrm{BA}-\mathrm{B}^{2}$ $=\mathrm{A}^{2}-\mathrm{AB}+\mathrm{AB}-\mathrm{B}^{2} \quad[\because \mathrm{AB}=\mathrm{BA}]$ $=\mathrm{A}^{2}-\mathrm{B}^{2}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.