Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{A}$ and $\mathrm{B}$ are mutually exclusive events, then
MathematicsProbability
Options:
  • A
    $\mathrm{P}(\mathrm{A}) \leq \mathrm{P}(\overline{\mathrm{B}})$
  • B
    $\mathrm{P}(\mathrm{A}) \geq \mathrm{P}(\overline{\mathrm{B}})$
  • C
    $\mathrm{P}(\mathrm{A}) < \mathrm{P}(\mathrm{B})$
  • D
    None of these
Solution:
1892 Upvotes Verified Answer
The correct answer is:
$\mathrm{P}(\mathrm{A}) \leq \mathrm{P}(\overline{\mathrm{B}})$
Given that A and B are two mutually exclusively events Then,
$$
\begin{aligned}
&\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B}) \quad[\because(\mathrm{A} \cap \mathrm{B})=\phi] \\
&\text { since, } \mathrm{P}(\mathrm{A} \cup \mathrm{B}) \leq 1 \therefore \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B}) \leq 1 \\
&\Rightarrow \mathrm{P}(\mathrm{A})+1-\mathrm{P}(\overline{\mathrm{B}}) \leq 1 \Rightarrow \mathrm{P}(\mathrm{A}) \leq \mathrm{P}(\overline{\mathrm{B}})
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.