Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $A$ and $B$ are mutually exclusive events with $P(A)=\frac{1}{4}$ and $P(B)=\frac{3}{7}$. Then, what is the value of $P(A / A \cup B)=$ ?
MathematicsProbabilityAP EAMCETAP EAMCET 2021 (24 Aug Shift 1)
Options:
  • A $\frac{7}{19}$
  • B $\frac{12}{19}$
  • C $\frac{06}{19}$
  • D $\frac{13}{19}$
Solution:
2619 Upvotes Verified Answer
The correct answer is: $\frac{7}{19}$
$A$ and $B$ are mutually exclusive
$$
\begin{aligned}
& A \cap B=\phi \Rightarrow P(A \cap B)=0 \\
& \text { and } P(A)=\frac{1}{4} \text { and } P(B)=\frac{3}{7}
\end{aligned}
$$
Now, $P\left(\frac{A}{A \cup B}\right)=\frac{P(A \cap(A \cup B))}{P(A \cup B)}$
$$
\left[\because P\left(\frac{A}{B}\right)=\frac{P(A \cap B)}{P(B)}\right]
$$
$$
\begin{aligned}
& \because \quad A \cap(A \cup B)=A \\
& \therefore P(A \cap(A \cup B))=P(A)=\frac{1}{4}
\end{aligned}
$$
$$
\text { and } \begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A \cap B) \\
& =\frac{1}{4}+\frac{3}{7}-0=\frac{7+12}{28}=\frac{19}{28}
\end{aligned}
$$
$\begin{aligned} \therefore \text { Required probability } & =\frac{\frac{1}{4}}{\frac{19}{28}} \\ & =\frac{28}{19 \times 4}=\frac{7}{19}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.