Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{A}$ and $\mathrm{B}$ are non-singular matrices and $\operatorname{det}(\mathrm{AB})=(\operatorname{det} \mathrm{A})$ $(\operatorname{det} \mathrm{B})$, then $((\operatorname{det} \mathrm{A})(\operatorname{det} \mathrm{B})) \mathrm{B}^{-1} \mathrm{~A}^{-1}=$
MathematicsMatricesAP EAMCETAP EAMCET 2023 (18 May Shift 1)
Options:
  • A Adj (BA)
  • B $\operatorname{Adj}(\mathrm{A})+\operatorname{Adj}(\mathrm{B})$
  • C $\operatorname{Adj}(\mathrm{AB})$
  • D $(\operatorname{Adj} B)(\operatorname{Adj} A)$
Solution:
2664 Upvotes Verified Answer
The correct answer is: $\operatorname{Adj}(\mathrm{AB})$
$\because \operatorname{det}(A B)=(\operatorname{det} A) \cdot(\operatorname{det} B)$
Now, $(\operatorname{det} A)(\operatorname{det} B)) B^{-1} A^{-1}=(\operatorname{det}(A B))(A B)^{-1}$
$=\operatorname{Adj}(\mathrm{AB}) \quad\left(\because \mathrm{A}^{-1}=\frac{\operatorname{Adj}(\mathrm{A})}{\operatorname{det}(\mathrm{A})}\right)$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.