Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If A and B are two angles such that A, B, $\in(0, \pi)$ and they are not supplementary
angles such that $\sin A-\sin B=0$, then
MathematicsTrigonometric Ratios & IdentitiesMHT CETMHT CET 2020 (19 Oct Shift 1)
Options:
  • A $A-B=\frac{\pi}{3}$
  • B $A-B=\frac{\pi}{2}$
  • C $A=B$
  • D $A \neq B$
Solution:
2349 Upvotes Verified Answer
The correct answer is: $A=B$
(D)
$\sin A-\sin B=0$
$\sin A=\sin B$ and we know that $\sin A=\sin (\pi-A)=\sin B$
$\therefore \mathrm{A}=\mathrm{B}$ or $\pi-\mathrm{A}=\mathrm{B}$
$\therefore \mathrm{A}=\mathrm{B}$ or $\mathrm{A}+\mathrm{B}=\pi$
Since the angles are not supplementary we say $\mathrm{A}=\mathrm{B}$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.