Search any question & find its solution
Question:
Answered & Verified by Expert
If $A$ and $B$ are two independent events such that $P(B)=\frac{2}{7}, P\left(A \cup B^c\right)=0.8$, then $P(A)$ is equal to :
Options:
Solution:
1469 Upvotes
Verified Answer
The correct answer is:
0.3
$\because P(B)=\frac{2}{7}$ and $P\left(A \cup B^c\right)=0.8$
$P\left(B^c\right)=1-\frac{2}{7}=\frac{5}{7}$
We know that
$P\left(A \cup B^c\right)=P(A)+P\left(B^c\right)-P(A) \cdot P\left(B^c\right)$
$\Rightarrow \quad 0.8=P(A)+\frac{5}{7}-\frac{5}{7} P(A)$
$0.8=\frac{5}{7}+\frac{2}{7} P(A)$
$\Rightarrow \quad 5.6-5=2 P(A)$
$\Rightarrow \quad P(A)=0.3$
$P\left(B^c\right)=1-\frac{2}{7}=\frac{5}{7}$
We know that
$P\left(A \cup B^c\right)=P(A)+P\left(B^c\right)-P(A) \cdot P\left(B^c\right)$
$\Rightarrow \quad 0.8=P(A)+\frac{5}{7}-\frac{5}{7} P(A)$
$0.8=\frac{5}{7}+\frac{2}{7} P(A)$
$\Rightarrow \quad 5.6-5=2 P(A)$
$\Rightarrow \quad P(A)=0.3$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.