Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $A$ and $B$ are two square matrices of the same order such that $A B=B$ and $B A=A$, then $\mathrm{A}^{2}+\mathrm{B}^{2}$ is always equal to
MathematicsMatricesKCETKCET 2010
Options:
  • A $I$
  • B $\mathrm{A}+\mathrm{B}$
  • C $2 \mathrm{AB}$
  • D $2 \mathrm{BA}$
Solution:
2097 Upvotes Verified Answer
The correct answer is: $\mathrm{A}+\mathrm{B}$
$\begin{array}{lr}\text { Given, } \quad \mathrm{AB}=\mathrm{B}, \mathrm{BA}=\mathrm{A} & \ldots \text { (i) } \\ \text { Then, } \quad \mathrm{A}^{2}+\mathrm{B}^{2}=\mathrm{A} \cdot \mathrm{A}+\mathrm{B} \cdot \mathrm{B} & \\ =\mathrm{A}(\mathrm{BA})+\mathrm{B}(\mathrm{AB}) & \text { [from Eq. (i) }] \\ =(\mathrm{AB}) \mathrm{A}+(\mathrm{BA}) \mathrm{B} & \text { (by commutative law) } \\ =\mathrm{BA}+\mathrm{AB} & \text { [from Eq. (i)] } \\ =\mathrm{A}+\mathrm{B} & \text { [from Eq. (i) }\end{array}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.