Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\vec{a}$ and $\vec{b}$ are two unit vectors inclined at an angle $60^{\circ}$ to each other, then which one of the following is correct?
MathematicsVector AlgebraNDANDA 2008 (Phase 2)
Options:
  • A $|\vec{a}+\vec{b}| < 1$
  • B $|\vec{a}+\vec{b}|>1$
  • C $|\vec{a}-\vec{b}| < 1$
  • D $|\vec{a}-\vec{b}|>1$
Solution:
1825 Upvotes Verified Answer
The correct answer is: $|\vec{a}+\vec{b}|>1$
$\begin{aligned}|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}| &=\sqrt{|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|^{2}} \\ &=\sqrt{|\overrightarrow{\mathbf{a}}|^{2}+|\overrightarrow{\mathbf{b}}|^{2}+2|\overrightarrow{\mathbf{a}}| \cdot|\overrightarrow{\mathbf{b}}| \cos 60^{\circ}} \\ &=\sqrt{1^{2}+1^{2}+2 \cdot 1 \cdot 1 \cdot \frac{1}{2}}=\sqrt{3} \\ \therefore|\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}|>1 \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.