Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\vec{a}$ and $\vec{b}$ are vectors such that $|\vec{a}+\vec{b}|=\sqrt{29}$ and $\vec{a} \times(2 \hat{i}+3 \hat{j}+4 \hat{k})=(2 \hat{i}+3 \hat{j}+4 \hat{k}) \times \vec{b}$, then a possible value of $(\vec{a}+\vec{b}) \cdot(-7 \hat{i}+2 \hat{j}+3 \hat{k})$ is
MathematicsVector AlgebraJEE AdvancedJEE Advanced 2012 (Paper 2)
Options:
  • A 0
  • B 3
  • C 4
  • D 8
Solution:
2894 Upvotes Verified Answer
The correct answer is: 4
Given that $\vec{a} \times(2 \hat{i}+3 \hat{j}+4 \hat{k})=(2 \hat{i}+3 \hat{j}+4 \hat{k}) \times \vec{b}$ $\Rightarrow(\vec{a}+\vec{b}) \times(2 \hat{i}+3 \hat{j}+4 \hat{k})=\overrightarrow{0}$

But $\vec{a}+\vec{b} \neq 0$ and $2 \hat{i}+3 \hat{j}+4 \hat{k} \neq 0$

$\therefore(\vec{a}+\vec{b}) \|(2 \hat{i}+3 \hat{j}+4 \hat{k})$.

Let $\vec{a}+\vec{b}=\lambda(2 \hat{i}+3 \hat{j}+4 \hat{k})$

Also given that $|\vec{a}+\vec{b}|=\sqrt{29} \Rightarrow \lambda=\pm 1$

$\therefore \vec{a}+\vec{b}=\pm(2 \hat{i}+3 \hat{j}+4 \hat{k})$

So, $(\vec{a}+\vec{b}) \cdot(-7 \hat{i}+2 \hat{i}+3 \hat{k})=\pm 4$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.