Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathbf{a}$ and $\mathbf{b}$ are vectors such that $|\mathbf{a}+\mathbf{b}|$ $=\mid \mathbf{a}-\mathbf{b}$, then the angle between $\mathbf{a}$ and $\mathbf{b}$ is
MathematicsVector AlgebraKCETKCET 2007
Options:
  • A $120^{\circ}$
  • B $60^{\circ}$
  • C $90^{\circ}$
  • D $30^{\circ}$
Solution:
1874 Upvotes Verified Answer
The correct answer is: $90^{\circ}$
We have, $\quad|\mathbf{a}+\mathbf{b}|=|\mathbf{a}-\mathbf{b}|$
On squaring both sides, we get
$\quad|\mathbf{a}+\mathbf{b}|^{2}=|\mathbf{a}-\mathbf{b}|^{2}$ $\Rightarrow|\mathbf{a}|^{2}+\left.\left|\mathbf{b}^{2}+2 \mathbf{a} \cdot \mathbf{b}=\right| \mathbf{a}\right|^{2}+|\mathbf{b}|^{2}-2 \mathbf{a} \cdot \mathbf{b}$ $\Rightarrow \quad 4 \mathbf{a} \cdot \mathbf{b}=0$ $\Rightarrow \quad \mathbf{a} \cdot \mathbf{b}=0$ $\Rightarrow \mathbf{a}$ and $\mathbf{b}$ are perpendicular to each other. So, angle between them is $90^{\circ} .$ Alternative $\because \quad|\mathbf{a}+\mathbf{b}|=|\mathbf{a}-\mathbf{b}|$ $\therefore \mathbf{a}$ and $\mathbf{b}$ are perpendicular to each other So, angle between $\mathbf{a}$ and $\mathbf{b}$ is $90^{\circ} .$
So, angle between them is $90^{\circ}$.
Alternative
$\therefore$ a and $\mathbf{b}$ are perpendicular to each other So, angle between $\mathbf{a}$ and $\mathbf{b}$ is $90^{\circ}$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.