Search any question & find its solution
Question:
Answered & Verified by Expert
If $\vec{a}$ and $\vec{b}$ makes an angle $\cos ^{-1}\left(\frac{5}{9}\right)$ with each other, then $|\vec{a}+\vec{b}|=\sqrt{2}|\vec{a}-\vec{b}|$ for $|\vec{a}|=n|\vec{b}|$ The integer value of $\mathrm{n}$ is ____
Solution:
2246 Upvotes
Verified Answer
The correct answer is:
3
$\begin{aligned} & \cos \theta=\frac{5}{9} \\ & \frac{\vec{a} \cdot \vec{b}}{a b}=\frac{5}{9} \\ & a^2+b^2+2 \vec{a} \cdot \vec{b}=2 a^2+2 b^2-4 \vec{a} \cdot \vec{b} \\ & 6 \vec{a} \cdot \vec{b}=a^2+b^2\end{aligned}$
$\begin{aligned} & 6 \times \frac{5}{9} a b=a^2+b^2 \\ & \frac{10}{3} a b=a^2+b^2 \quad \& \quad a=n b \\ & \frac{10}{3} n b^2=n^2 b^2+b^2 \\ & 3 n^2-10 n+3=0 \\ & n=\frac{1}{3} \text { and } n=3\end{aligned}$
integer value $n=3$
$\begin{aligned} & 6 \times \frac{5}{9} a b=a^2+b^2 \\ & \frac{10}{3} a b=a^2+b^2 \quad \& \quad a=n b \\ & \frac{10}{3} n b^2=n^2 b^2+b^2 \\ & 3 n^2-10 n+3=0 \\ & n=\frac{1}{3} \text { and } n=3\end{aligned}$
integer value $n=3$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.