Search any question & find its solution
Question:
Answered & Verified by Expert
If $a, b>0$, then minimum value of $y=\frac{b^2}{a-x}+\frac{a^2}{x}, 0 < x < a$ is
Options:
Solution:
2598 Upvotes
Verified Answer
The correct answer is:
$\frac{(a+b)^2}{a}$
Given, $y=\frac{b^2}{a-x}+\frac{a^2}{x}$
$\therefore \quad \frac{d y}{d x}=\frac{-b^2(-1)}{(a-x)^2}+\left(\frac{-a^2}{x^2}\right) \Rightarrow \frac{d y}{d x}=\frac{b^2}{(a-x)^2}-\frac{a^2}{x^2}$
$\because \quad \frac{d y}{d x}=0, x=\frac{a^2}{a \pm b}$
$\frac{d^2 y}{d x^2}=\frac{2 a^2}{x^3}+\frac{2 b^2}{(a-x)^3}$
So, $\left.\frac{d^2 y}{d x^2}\right|_{x=\frac{a^2}{a+b}}>0$
Therefore, $y$ is minimum at $x=\frac{a^2}{a+b}$
$y_{\min }=\frac{b^2}{a-\left(\frac{a^2}{a+b}\right)}+\frac{a^2}{(a)^2}(a+b)$
$=\frac{b^2(a+b)}{a^2+a b-a^2}+(a+b)=(a+b)\left[\frac{b}{a}+1\right]$
$=\frac{(a+b)^2}{a}$
$\therefore \quad \frac{d y}{d x}=\frac{-b^2(-1)}{(a-x)^2}+\left(\frac{-a^2}{x^2}\right) \Rightarrow \frac{d y}{d x}=\frac{b^2}{(a-x)^2}-\frac{a^2}{x^2}$
$\because \quad \frac{d y}{d x}=0, x=\frac{a^2}{a \pm b}$
$\frac{d^2 y}{d x^2}=\frac{2 a^2}{x^3}+\frac{2 b^2}{(a-x)^3}$
So, $\left.\frac{d^2 y}{d x^2}\right|_{x=\frac{a^2}{a+b}}>0$
Therefore, $y$ is minimum at $x=\frac{a^2}{a+b}$
$y_{\min }=\frac{b^2}{a-\left(\frac{a^2}{a+b}\right)}+\frac{a^2}{(a)^2}(a+b)$
$=\frac{b^2(a+b)}{a^2+a b-a^2}+(a+b)=(a+b)\left[\frac{b}{a}+1\right]$
$=\frac{(a+b)^2}{a}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.