Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $|\mathbf{a}+\mathbf{b}|^{2}+|\mathbf{a} \cdot \mathbf{b}|^{2}=144|\mathbf{a}|=6$, then $|\mathbf{b}|$ is equal to
MathematicsThree Dimensional GeometryKCETKCET 2020
Options:
  • A 6
  • B 3
  • C 2
  • D 4
Solution:
1363 Upvotes Verified Answer
The correct answer is: 2
We have,
$|\mathbf{a}+\mathbf{b}|^{2}+|\mathbf{a} \cdot \mathbf{b}|^{2}=144, \text { and }|\mathbf{a}|=6$
We know that,
$|\mathbf{a}+\mathbf{b}|^{2}+|\mathbf{a} \cdot \mathbf{b}|^{2}=(|\mathbf{a}||\mathbf{b}|)^{2}$
$\Rightarrow \quad|\mathbf{a}|^{2}|\mathbf{b}|^{2}=144$
$\Rightarrow \quad(6)^{2}|\mathbf{b}|^{2}=144$
$\Rightarrow \quad|\mathbf{b}|^{2}=4$
$\Rightarrow \quad|\mathbf{b}|=2$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.