Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$ are non-coplanar, then the value of $\mathbf{a} \cdot\left\{\frac{\mathbf{b} \times \mathbf{c}}{3 \mathbf{b} \cdot(\mathbf{c} \times \mathbf{a})}\right\}-\mathbf{b} \cdot\left\{\frac{\mathbf{c} \times \mathbf{a}}{2 \mathbf{c} \cdot(\mathbf{a} \times \mathbf{b})}\right\}$ is
MathematicsVector AlgebraKCETKCET 2011
Options:
  • A $-\frac{1}{2}$
  • B $-\frac{1}{3}$
  • C $-\frac{1}{6}$
  • D $\frac{1}{6}$
Solution:
2057 Upvotes Verified Answer
The correct answer is: $-\frac{1}{6}$
Given, [a b c] $\neq 0$, i.e., non-coplanar.
$$
\begin{aligned}
&=\mathbf{a} \cdot\left\{\frac{\mathbf{a} \times \mathbf{c}}{3 \mathbf{b} \cdot(\mathbf{c} \times \mathbf{a})}\right\}-\mathbf{b} \cdot\left\{\frac{\mathbf{c} \times \mathbf{a}}{2 \mathbf{c} \cdot(\mathbf{a} \times \mathbf{c})}\right\} \\
&=\frac{\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})}{3 \mathbf{b} \cdot(\mathbf{c} \times \mathbf{a})}-\frac{\mathbf{b} \cdot(\mathbf{c} \times \mathbf{a})}{2 \mathbf{c} \cdot(\mathbf{a} \times \mathbf{b})} \\
&=\frac{[\mathbf{a} \mathbf{b} \mathbf{c}]}{3[\mathbf{b} \mathbf{c} \mathbf{a}]}-\frac{[\mathbf{b} \mathbf{c} \mathbf{a}]}{2[\mathbf{c} \mathbf{a} \mathbf{b}]}(\because \mathbf{a} \cdot(\mathbf{b} \times \mathbf{b})=[\mathbf{a} \mathbf{b} \mathbf{c}] \\
&=\frac{[\mathbf{b} \mathbf{c} \mathbf{a}]=[\mathbf{a} \mathbf{b} \mathbf{c}],[\mathbf{c} \mathbf{a} \mathbf{b}]=[\mathbf{b} \mathbf{c} \mathbf{a}]}{3[\mathbf{a} \mathbf{b ~ c}]}-\frac{[\mathbf{b} \mathbf{c} \mathbf{a}]}{2[\mathbf{b} \mathbf{c} \mathbf{a}]} \\
&=1 / 3-1 / 2=-1 / 6
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.