Search any question & find its solution
Question:
Answered & Verified by Expert
If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ are non-zero coplanar vectors, then $[2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}} 3 \overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}} 4 \overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}}]$ is
Options:
Solution:
2263 Upvotes
Verified Answer
The correct answer is:
0
$\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ non-zero coplanar vectors
$$
\begin{gathered}
{[2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}} 3 \overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}} 4 \overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}}]} \\
=(2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}) \cdot[(3 \overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}}) \times(4 \overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}})] \\
=(2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}) \cdot[12 \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}-4 \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{c}}-3 \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}]
\end{gathered}
$$
$\begin{aligned}=(2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}})[12 \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}-3 \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}] \\ &(\because \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{c}}=0) \end{aligned}$
$$
\begin{aligned}
&=24 \overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})-6 \overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}})+2 \overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}) \\
&\quad-12 \overrightarrow{\mathbf{b}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})+3 \overrightarrow{\mathbf{b}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}})-\overrightarrow{\mathbf{b}} \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}) \\
&=24[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]-6[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{a}}]+2[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{a}}] \\
&-\quad-12[\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]+3[\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{a}}]-[\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{a}}]
\end{aligned}
$$
$$
\begin{aligned}
(\because[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{a}}]=& {[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{a}}]=[\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=[\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{a}}]=0) } \\
=& 24[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]-[\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{a}}] \\
&(\because[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=[\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{a}}]) \\
&=24[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]-[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}] \\
&=23[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]
\end{aligned}
$$
Given $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are coplanar that is $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=0$
$$
\text { Hence, } 23 \times 0=0
$$
$$
\begin{gathered}
{[2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}} 3 \overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}} 4 \overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}}]} \\
=(2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}) \cdot[(3 \overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}}) \times(4 \overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}})] \\
=(2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}) \cdot[12 \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}-4 \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{c}}-3 \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}]
\end{gathered}
$$
$\begin{aligned}=(2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}})[12 \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}-3 \overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}] \\ &(\because \overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{c}}=0) \end{aligned}$
$$
\begin{aligned}
&=24 \overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})-6 \overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}})+2 \overrightarrow{\mathbf{a}} \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}) \\
&\quad-12 \overrightarrow{\mathbf{b}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}})+3 \overrightarrow{\mathbf{b}} \cdot(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}})-\overrightarrow{\mathbf{b}} \cdot(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}) \\
&=24[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]-6[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{a}}]+2[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{a}}] \\
&-\quad-12[\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]+3[\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{a}}]-[\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{a}}]
\end{aligned}
$$
$$
\begin{aligned}
(\because[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{a}}]=& {[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{a}}]=[\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=[\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{a}}]=0) } \\
=& 24[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]-[\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{a}}] \\
&(\because[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=[\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{a}}]) \\
&=24[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]-[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}] \\
&=23[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]
\end{aligned}
$$
Given $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are coplanar that is $[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]=0$
$$
\text { Hence, } 23 \times 0=0
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.