Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$ are position vectors of the vertices of $\triangle A B C$, then $\frac{(\mathbf{a}-\mathbf{c}) \times(\mathbf{b}-\mathbf{a})}{(\mathbf{b}-\mathbf{a}) \cdot(\mathbf{c}-\mathbf{a})}=$
MathematicsVector AlgebraAP EAMCETAP EAMCET 2020 (22 Sep Shift 2)
Options:
  • A $\cot C$
  • B $\tan A$
  • C $\tan C$
  • D $-\tan A$
Solution:
2478 Upvotes Verified Answer
The correct answer is: $\tan A$
$$
\text { } \frac{(\mathbf{a}-\mathbf{c}) \times(\mathbf{b}-\mathbf{a})}{(\mathbf{b}-\mathbf{a}) \cdot(\mathbf{c}-\mathbf{a})}=\frac{\mathbf{C A} \times \mathbf{A B}}{\mathbf{A B} \cdot \mathbf{A C}}
$$


Hence, option (2) is correct.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.