Search any question & find its solution
Question:
Answered & Verified by Expert
If $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$ are position vectors of the vertices of $\triangle A B C$, then $\frac{(\mathbf{a}-\mathbf{c}) \times(\mathbf{b}-\mathbf{a})}{(\mathbf{b}-\mathbf{a}) \cdot(\mathbf{c}-\mathbf{a})}=$
Options:
Solution:
2478 Upvotes
Verified Answer
The correct answer is:
$\tan A$
$$
\text { } \frac{(\mathbf{a}-\mathbf{c}) \times(\mathbf{b}-\mathbf{a})}{(\mathbf{b}-\mathbf{a}) \cdot(\mathbf{c}-\mathbf{a})}=\frac{\mathbf{C A} \times \mathbf{A B}}{\mathbf{A B} \cdot \mathbf{A C}}
$$

Hence, option (2) is correct.
\text { } \frac{(\mathbf{a}-\mathbf{c}) \times(\mathbf{b}-\mathbf{a})}{(\mathbf{b}-\mathbf{a}) \cdot(\mathbf{c}-\mathbf{a})}=\frac{\mathbf{C A} \times \mathbf{A B}}{\mathbf{A B} \cdot \mathbf{A C}}
$$

Hence, option (2) is correct.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.