Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $a, b$ and $c$ are real numbers then the roots of the equation $(x-a)(x-b)+(x-b)(x-c)+(x-c)(x$$-a)=0$ are always
MathematicsQuadratic EquationBITSATBITSAT 2016
Options:
  • A real
  • B imaginary
  • C positive
  • D negative
Solution:
2474 Upvotes Verified Answer
The correct answer is: real
Given equation is $(x-a)(x-b)+(x-b)$ $(x-c)+(x-c)(x-a)=0$

$\Rightarrow 3 x^{2}-2(b+a+c) x+a b+b c+c a=0$

Now, here $A=3, B=-2(a+b+c)$

$C=a b+b c+c a$

$\therefore D=\sqrt{B^{2}-4 A C}$

$=\sqrt{(-2(a+b+c))^{2}-4(3)(a b+b c+c a)}$

$=\sqrt{4(a+b+c)^{2}-12(a b+b c+c a)}$

$=2 \sqrt{a^{2}+b^{2}+c^{2}-a b-b c-c a}$

$=2 \sqrt{\frac{1}{2}\left\{(a-b)^{2}-(b-c)^{2}+(c-a)^{2}\right\}} \geq 0$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.