Search any question & find its solution
Question:
Answered & Verified by Expert
If $a, b$ and $c$ are three distinct real numbers and $\lim _{x \rightarrow \infty} \frac{(b-c) x^2+(c-a) x+(a-b)}{(a-b) x^2+(b-c) x+(c-a)}=\frac{1}{2}$, then $a+2 c=$
Options:
Solution:
1491 Upvotes
Verified Answer
The correct answer is:
$3 b$
$\lim _{x \rightarrow \infty} \frac{(b-c) x^2+(c-a) x+(a-b)}{(a-b) x^2+(b-c) x+(c-a)}=\frac{1}{a}$
$=\lim _{x \rightarrow \infty} \frac{x^2}{x^2}\left[\frac{(b-c)+(c-a) \frac{1}{x}+\frac{(a-b)}{x^2}}{(a-b)+(b-c) \frac{1}{x}+\frac{(c-a)}{x^2}}\right]=\frac{1}{2}$
$=\frac{b-c}{a-b}=\frac{1}{2}$
$\begin{aligned} & \Rightarrow \quad 2 b-2 c=a-b \\ & \Rightarrow \quad 3 b=a+2 c\end{aligned}$
$=\lim _{x \rightarrow \infty} \frac{x^2}{x^2}\left[\frac{(b-c)+(c-a) \frac{1}{x}+\frac{(a-b)}{x^2}}{(a-b)+(b-c) \frac{1}{x}+\frac{(c-a)}{x^2}}\right]=\frac{1}{2}$
$=\frac{b-c}{a-b}=\frac{1}{2}$
$\begin{aligned} & \Rightarrow \quad 2 b-2 c=a-b \\ & \Rightarrow \quad 3 b=a+2 c\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.