Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{a}, \mathrm{b}$ and $\mathrm{c}$ are three non-coplanar vectors, then $(\mathbf{a}+\mathbf{b}-\mathbf{c}) \cdot[(\mathbf{a}-\mathbf{b}) \times(\mathbf{b}-\mathbf{c})$ equals
MathematicsVector AlgebraVITEEEVITEEE 2015
Options:
  • A 0
  • B $\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}$
  • C $\mathbf{a} \cdot \mathbf{c} \times \mathbf{b}$
  • D $3 \mathbf{a} . \mathbf{b} \times \mathbf{c}$
Solution:
2107 Upvotes Verified Answer
The correct answer is: $\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}$
$[\mathrm{a}+\mathrm{b}-\mathrm{c}] \cdot[(\mathrm{a}-\mathrm{b}) \times(\mathrm{b}-\mathrm{c})$
$=(\mathrm{a}+\mathrm{b}-\mathrm{c}) \cdot[\mathrm{a} \times \mathrm{b}-\mathrm{a} \times \mathrm{c}-\mathrm{b} \times \mathrm{b}+\mathrm{b} \times \mathrm{c}]$
$=\mathrm{a} \cdot(\mathrm{a} \times \mathrm{b})-\mathrm{a} \cdot(\mathrm{a} \times \mathrm{c})+\mathrm{a} \cdot(\mathrm{b} \times \mathrm{c})+\mathrm{b}$
$(\mathrm{a} \times \mathrm{b})-\mathrm{b}(\mathrm{a} \times \mathrm{c})+\mathrm{b} \cdot(\mathrm{b} \times \mathrm{c})-\mathrm{c} \cdot(\mathrm{a} \times \mathrm{b})$
$+\mathrm{c} \cdot(\mathrm{a} \times \mathrm{c})-\mathrm{c} \cdot(\mathrm{b} \times \mathrm{c})$
$=\mathrm{a} \cdot(\mathrm{b} \times \mathrm{c})-\mathrm{b} \cdot(\mathrm{a} \times \mathrm{c})-\mathrm{c} \cdot(\mathrm{a} \times \mathrm{b})$
$=[\mathrm{a} \mathrm{b} \mathrm{c}]-[\mathrm{b} \mathrm{a} \mathrm{c}]-[\mathrm{c} \mathrm{a} \mathrm{b}]$
$=[\mathrm{a} \mathrm{b} \mathrm{c}]+[\mathrm{a} \mathrm{b} \mathrm{c}]-[\mathrm{a} \mathrm{b} \mathrm{c}]$
$=[\mathrm{a} \mathrm{b} \mathrm{c}]=\mathrm{a} \cdot(\mathrm{b} \times \mathrm{c})$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.