Search any question & find its solution
Question:
Answered & Verified by Expert
If $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$ are three vectors such that $|\mathbf{a}|=3,|\mathbf{b}|=4$ and $|\mathbf{c}|=5$ and $\mathbf{a}+\mathbf{b}+\mathbf{c}=0$, then $\mathbf{a} \cdot \mathbf{b}$ is equal to
Options:
Solution:
2445 Upvotes
Verified Answer
The correct answer is:
0
$\begin{aligned} & \text { } \mathbf{a}, \mathbf{b}, \mathbf{c} \text { are three vectors such that }|\mathbf{a}|=3 \text {, } \\ & \begin{array}{l}|\mathbf{b}|=4,|\mathbf{c}|=5 \text { and } \mathbf{a}+\mathbf{b}+\mathbf{c}=0 \\ \text { Now, } \mathbf{a}+\mathbf{b}+\mathbf{c}=0 \\ \quad \mathbf{a}+\mathbf{b}=-\mathbf{c}\end{array} \\ & \begin{aligned} \Rightarrow \quad(\mathbf{a}+\mathbf{b})^2=(-\mathbf{c})^2\end{aligned} \\ & \begin{aligned} & \Rightarrow|\mathbf{a}|^2+|\mathbf{b}|^2+2 \mathbf{a} \cdot \mathbf{b}=|\mathbf{c}|^2\left[\because \mathbf{a} \cdot \mathbf{a}=|\mathbf{a}|^2\right] \\ & \Rightarrow 3^2+4^2+2 \mathbf{a} \cdot \mathbf{b}=5^2 \\ & \Rightarrow \quad 2 \mathbf{a} \cdot \mathbf{b}=25-9-16 \\ & \Rightarrow \quad 2 \mathbf{a} \cdot \mathbf{b}=0 \\ & \Rightarrow \mathbf{a} \cdot \mathbf{b}=0\end{aligned}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.