Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If A, B are any two events of a random experiment and $\mathrm{P}(\mathrm{B}) \neq 1$, then $\mathrm{P}\left(\mathrm{A} \backslash \mathrm{B}^{\mathrm{C}}\right)=$
MathematicsProbabilityAP EAMCETAP EAMCET 2023 (18 May Shift 2)
Options:
  • A $\frac{\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{1-\mathrm{P}(\mathrm{B})}$
  • B $\frac{\mathrm{P}(\mathrm{A})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{1-\mathrm{P}(\mathrm{B})}$
  • C $\frac{\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{1+\mathrm{P}(\mathrm{B})}$
  • D $\frac{\mathrm{P}(\mathrm{A})}{1+\mathrm{P}(\mathrm{B})}$
Solution:
1746 Upvotes Verified Answer
The correct answer is: $\frac{\mathrm{P}(\mathrm{A})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{1-\mathrm{P}(\mathrm{B})}$
$P\left(A / B^c\right)=\frac{P\left(A \cap B^c\right)}{P\left(B^c\right)}=\frac{P(A)-P(A \cap B)}{1-P(B)}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.