Search any question & find its solution
Question:
Answered & Verified by Expert
If $(\mathrm{a} \times \mathrm{b}) \times \overline{\mathrm{c}}=\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})$, where $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ are any three vectors such that $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}} \neq 0$, $\overline{\mathrm{b}} \cdot \overline{\mathrm{c}} \neq 0$, then $\mathrm{a}$ and $\mathrm{c}$ are
Options:
Solution:
2597 Upvotes
Verified Answer
The correct answer is:
parallel
parallel
$(\mathrm{a} \times \mathrm{b}) \times \overline{\mathrm{c}}=\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}}), \overline{\mathrm{a}} \cdot \overline{\mathrm{b}} \neq 0, \overline{\mathrm{b}} \cdot \overline{\mathrm{c}} \neq 0$
$\Rightarrow(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}) \overline{\mathrm{b}}-(\overline{\mathrm{b}} \cdot \overline{\mathrm{c}}) \overline{\mathrm{a}}=(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}) \overline{\mathrm{b}}-(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}) \overline{\mathrm{c}}$
$(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}) \overline{\mathrm{c}}=(\overline{\mathrm{b}} \cdot \overline{\mathrm{c}}) \overline{\mathrm{a}}$
$\overline{\mathrm{a}} \| \overline{\mathrm{c}}$
$\Rightarrow(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}) \overline{\mathrm{b}}-(\overline{\mathrm{b}} \cdot \overline{\mathrm{c}}) \overline{\mathrm{a}}=(\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}) \overline{\mathrm{b}}-(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}) \overline{\mathrm{c}}$
$(\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}) \overline{\mathrm{c}}=(\overline{\mathrm{b}} \cdot \overline{\mathrm{c}}) \overline{\mathrm{a}}$
$\overline{\mathrm{a}} \| \overline{\mathrm{c}}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.