Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and $\mathbf{d}$ are the unit vectors such that $(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})=1$ and $\mathbf{a} \cdot \mathbf{c}=\frac{1}{2}$, then
MathematicsVector AlgebraJEE Main
Options:
  • A
    $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are non-coplanar
  • B
    $\mathbf{b}, \mathbf{d}$ are non-parallel
  • C
    $\mathbf{a}, \mathbf{b}, \mathbf{d}$ are non-coplanar
  • D
    a, d are parallel and $\mathbf{b}, \mathbf{c}$ are parallel
Solution:
2273 Upvotes Verified Answer
The correct answer is:
$\mathbf{a}, \mathbf{b}, \mathbf{d}$ are non-coplanar
Let angle between $\mathbf{a}$ and $\mathbf{b}$ be $\theta_1, \mathbf{c}$ and $\mathbf{d}$ be $\theta_2$ and $\mathbf{a} \times \mathbf{b}$ and $\mathbf{c} \times \mathbf{d}$ be $\theta$.
Since, $(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})=1$
$\Rightarrow \quad \sin \theta_1 \cdot \sin \theta_2 \cdot \cos \theta=1$
$\Rightarrow \theta_1=90^{\circ}, \theta_2=90^{\circ}, \theta=0^{\circ}$
$\Rightarrow \mathbf{a} \perp \mathbf{b}, \mathbf{c} \perp \mathbf{d},(\mathbf{a} \times \mathbf{b}) \|(\mathbf{c} \times \mathbf{d})$
So, $\mathbf{a} \times \mathbf{b}=k(\mathbf{c} \times \mathbf{d})$
and $\mathbf{a} \times \mathbf{b}=k(\mathbf{c} \times \mathbf{d})$
$\Rightarrow \quad(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}=k(\mathbf{c} \times \mathbf{d}) \cdot \mathbf{c}$
and $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{d}=k(\mathbf{c} \times \mathbf{d}) \cdot \mathbf{d}$
$\Rightarrow\left[\begin{array}{lll}\mathbf{a} & \mathbf{b} & \mathbf{c}\end{array}\right]=0$ and $\left[\begin{array}{lll}\mathbf{a} & \mathbf{b} & \mathbf{d}\end{array}\right]=0$

$\Rightarrow \mathbf{a}, \mathbf{b}, \mathbf{c}$ and $\mathbf{a}, \mathbf{b}, \mathbf{d}$ are coplanar vectors, so options (a) and (b) are incorrect.
Let $\quad \mathbf{b} \| \mathbf{d} \Rightarrow \mathbf{b}=\pm \mathbf{d}$
As $\quad(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})=1$
$(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{b})=\pm 1$
$\Rightarrow \quad[\mathbf{a} \times \mathbf{b} \mathbf{c} \mathbf{b}]=\pm 1$
$\Rightarrow \quad[\mathbf{c} \mathbf{b} \mathbf{a} \times \mathbf{b}]=\pm 1$
$\Rightarrow \quad \mathbf{c} \cdot[\mathbf{b} \times(\mathbf{a} \times \mathbf{b})]=\pm 1$
$\Rightarrow \quad \mathbf{c} \cdot[\mathbf{a}-(\mathbf{b} \cdot \mathbf{a}) \mathbf{b}]=\pm 1$
$\Rightarrow \quad \mathbf{c} \cdot \mathbf{a}=\pm 1 \quad[\because \mathbf{a} \cdot \mathbf{b}=0]$
which is a contradiction, so option (c) is correct.


Let option (d) be correct.
$$
\begin{array}{ll}
\Rightarrow & \mathbf{d}=\pm \mathbf{a} \text { and } \mathbf{c}=\pm \mathbf{b} \\
\text { As } & (\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})=1 \\
\Rightarrow & (\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{b} \times \mathbf{a})=\pm 1
\end{array}
$$
which is a contradiction, so option (d) is incorrect.
Alternatively option (c) and (d) may be observed from the given figure.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.