Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and $\mathrm{k}$ are non-zero real numbers and $\lim _{x \rightarrow \infty} x\left(a^{\frac{1}{x}}+b^{\frac{1}{x}}+c^{\frac{1}{x}}-3 k^{\frac{1}{x}}\right)=0$, then $\mathrm{k}=$
MathematicsLimitsTS EAMCETTS EAMCET 2023 (12 May Shift 1)
Options:
  • A $0$
  • B $(a b c)^{1 / 3}$
  • C $(a b c)^{-1 / 3}$
  • D $1$
Solution:
1897 Upvotes Verified Answer
The correct answer is: $(a b c)^{1 / 3}$
$\lim _{x \rightarrow \infty} x\left(a^{1 / x}+b^{1 / x}+c^{1 / x}-3 k^{1 / x}\right)=0$
$\begin{aligned} & \text { If } y=\frac{1}{x} \Rightarrow y \rightarrow 0 \\ & \Rightarrow \lim _{y \rightarrow 0}\left(\frac{a^y+b^y+c^y-3 k^y}{y}\right)=0 \\ & \Rightarrow \lim _{y \rightarrow 0}\left[\left(\frac{a^y-1}{y}\right)+\left(\frac{b^y-1}{y}\right)+\left(\frac{c^y-1}{y}\right)+\left(\frac{3-3 k^y}{y}\right)\right]=0 \\ & \Rightarrow \log a+\log b+\log c+\lim _{y \rightarrow 0} \frac{-3\left(k^y-1\right)}{y}=0 \\ & \Rightarrow \quad \log (a b c)=3 \cdot \lim _{y \rightarrow 0} \frac{k^y-1}{y} \\ & \Rightarrow \frac{1}{3} \log (a b c)=\lim _{y \rightarrow 0} \frac{k^y-1}{y} \\ & \Rightarrow \log (a b c)^{1 / 3}=\log k \\ & \therefore \quad k=(a b c)^{1 / 3} . \\ & \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.