Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathbf{A}+\mathbf{B}=\mathbf{C}$ and that $\mathbf{C}$ is perpendicular to $\mathbf{A}$. What is the angle between $\mathbf{A}$ and $\mathbf{B}$, if $|\mathbf{A}|=|\mathbf{C}|$ ?
PhysicsMathematics in PhysicsJIPMERJIPMER 2016
Options:
  • A $\frac{\pi}{4} \mathrm{rad}$
  • B $\frac{\pi}{2} \mathrm{rad}$
  • C $\frac{3 \pi}{4} \mathrm{rad}$
  • D $\pi$ rad
Solution:
2037 Upvotes Verified Answer
The correct answer is: $\frac{3 \pi}{4} \mathrm{rad}$
Given, $A+B=C$
and $\mathrm{B}=\mathrm{C}-\mathrm{A}$
Since, $\mathbf{C} \perp \mathbf{A}$, therefore
$B^2=C^2+A^2$
Also, $|\mathbf{C}|=|\mathbf{A}|$, therefore
$B^2=2 A^2 \Rightarrow B=\sqrt{2} A$
Now, $A^2+B^2+2 A B \cos \theta=C^2=A^2$
$\therefore \quad \cos \theta=-\frac{1}{\sqrt{2}}$
This gives $\quad \theta=\frac{3 \pi}{4} \mathrm{rad}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.