Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\bar{a}, \bar{b}, \bar{c}$ are mutually perpendicular vectors having magnitudes 1,2,3 respectively, then $[\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}} \overline{\mathrm{b}}-\overline{\mathrm{a}} \overline{\mathrm{c}}]=$
MathematicsVector AlgebraMHT CETMHT CET 2021 (22 Sep Shift 1)
Options:
  • A 12
  • B 18
  • C 0
  • D 6
Solution:
1017 Upvotes Verified Answer
The correct answer is: 12
$\begin{aligned} & {[\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}} \quad \overline{\mathrm{b}}-\overline{\mathrm{a}} \quad \overline{\mathrm{c}}]} \\ & =(\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}) \cdot[(\overline{\mathrm{b}}-\overline{\mathrm{a}}) \times \overline{\mathrm{c}}] \\ & =(\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}) \cdot[(\overline{\mathrm{b}} \times \overline{\mathrm{c}})-(\overline{\mathrm{a}} \times \overline{\mathrm{c}})] \\ & =\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})-\overline{\mathrm{b}} \cdot(\overline{\mathrm{a}} \times \overline{\mathrm{c}})=\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})+\overline{\mathrm{b}} \cdot(\overline{\mathrm{c}} \times \overline{\mathrm{a}}) \\ & =2 \overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=2(1)(2)(3)=12\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.