Search any question & find its solution
Question:
Answered & Verified by Expert
If $\bar{a}, \bar{b}, \bar{c}$ are mutually perpendicular vectors having magnitudes 1,2,3 respectively, then $[\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}} \overline{\mathrm{b}}-\overline{\mathrm{a}} \overline{\mathrm{c}}]=$
Options:
Solution:
1017 Upvotes
Verified Answer
The correct answer is:
12
$\begin{aligned} & {[\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}} \quad \overline{\mathrm{b}}-\overline{\mathrm{a}} \quad \overline{\mathrm{c}}]} \\ & =(\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}) \cdot[(\overline{\mathrm{b}}-\overline{\mathrm{a}}) \times \overline{\mathrm{c}}] \\ & =(\overline{\mathrm{a}}+\overline{\mathrm{b}}+\overline{\mathrm{c}}) \cdot[(\overline{\mathrm{b}} \times \overline{\mathrm{c}})-(\overline{\mathrm{a}} \times \overline{\mathrm{c}})] \\ & =\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})-\overline{\mathrm{b}} \cdot(\overline{\mathrm{a}} \times \overline{\mathrm{c}})=\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})+\overline{\mathrm{b}} \cdot(\overline{\mathrm{c}} \times \overline{\mathrm{a}}) \\ & =2 \overline{\mathrm{a}} \cdot(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=2(1)(2)(3)=12\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.