Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are non-coplanar unit vectors such that $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=\frac{\mathbf{b}+\mathbf{c}}{\sqrt{2}}$, then the angle between $\mathbf{a}$ and $\mathbf{b}$ is
MathematicsVector AlgebraAP EAMCETAP EAMCET 2018 (22 Apr Shift 2)
Options:
  • A $\frac{\pi}{6}$
  • B $\frac{\pi}{4}$
  • C $\frac{\pi}{2}$
  • D $\frac{3 \pi}{4}$
Solution:
2586 Upvotes Verified Answer
The correct answer is: $\frac{3 \pi}{4}$
Since, $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})$
$$
=(\mathbf{a} \cdot \mathbf{c}) \cdot \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}=\frac{\mathbf{b}+\mathbf{c}}{\sqrt{2}} \quad (given)
$$
So, $\quad \mathbf{a} \cdot \mathbf{b}=\frac{-1}{\sqrt{2}} \Rightarrow \cos \theta=-\frac{1}{\sqrt{2}}$
$\{\because \mathbf{a}$ and $\mathbf{b}$ are unit vector where $\theta$ is angle between vectors $\mathbf{a}$ and $\mathbf{b}\}$
$$
\Rightarrow \quad \theta=\frac{3 \pi}{4} \text {. }
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.