Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $a, b, c$ are non-zero real number with $c \neq 1$ such that $a^2+b^2+c^2=c$ and if $\alpha=\frac{a+i b}{1-c}$, then $a^2+b^2=$
MathematicsComplex NumberAP EAMCETAP EAMCET 2018 (23 Apr Shift 2)
Options:
  • A $\frac{|\alpha|^2}{\left(1+|\alpha|^2\right)^2}$
  • B $\frac{|\alpha|^4}{\left(1+|\alpha|^2\right)^2}$
  • C $\frac{|\alpha|}{1+|\alpha|^2}$
  • D $\frac{|\alpha|}{1+|\alpha|}$
Solution:
2966 Upvotes Verified Answer
The correct answer is: $\frac{|\alpha|^2}{\left(1+|\alpha|^2\right)^2}$
Given that, $\alpha=\frac{a+i b}{1-c}$
$$
\Rightarrow \quad|\alpha|^2=\frac{a^2+b^2}{(1-c)^2}
$$
And $a^2+b^2+c^2=c$
$$
\Rightarrow \quad a^2+b^2=c(1-c)
$$
From Eqs. (i) and (ii),
$$
\begin{aligned}
& |\alpha|^2=\frac{c}{(1-c)} \Rightarrow \frac{1+|\alpha|^2}{1}=\frac{1}{1-c} \\
\Rightarrow \quad 1-c & =\frac{1}{1+|\alpha|^2}
\end{aligned}
$$
From Eqs. (i) and (iii), we get
$$
|\alpha|^2=\frac{a^2+b^2}{\left(\frac{1}{1+|\alpha|^2}\right)^2} \Rightarrow a^2+b^2=\frac{|\alpha|^2}{\left(1+|\alpha|^2\right)^2}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.