Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\vec{a}, \vec{b}, \vec{c}$ are position vectors of points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively, with $2 \vec{a}+3 \vec{b}-5 \vec{c}=\overrightarrow{0}$, then the ratio in which point $\mathrm{C}$ divides segment $\mathrm{AB}$ is
MathematicsVector AlgebraMHT CETMHT CET 2022 (07 Aug Shift 1)
Options:
  • A 2:3 internally
  • B 2:3 externally
  • C 3:2 internally
  • D 3:2 externally
Solution:
1491 Upvotes Verified Answer
The correct answer is: 3:2 internally
$2 \vec{a}+3 \vec{b}=5 \vec{c} \Rightarrow \vec{c}=\frac{2 \vec{a}+3 \vec{b}}{5}=\frac{2 \vec{a}+3 \vec{b}}{2+3}$
i.e., $\vec{c}$ divides $\vec{a}$ and $\vec{b}$ in the ratio 3:2 internally

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.