Search any question & find its solution
Question:
Answered & Verified by Expert
If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are vectors of equal magnitude such that $(\mathbf{a}, \mathbf{b})=\alpha,(\mathbf{b}, \mathbf{c})=\beta,(\mathbf{c}, \mathbf{a})=\gamma$, then the minimum value of $\cos \alpha+\cos \beta+\cos \gamma$ is
Options:
Solution:
1105 Upvotes
Verified Answer
The correct answer is:
$-\frac{3}{2}$
We have, $\cos \alpha=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}, \cos \beta=\frac{\mathbf{b} \cdot \mathbf{c}}{|\mathbf{b}||\mathbf{c}|}$ and $\cos \gamma=\frac{\mathbf{c} \cdot \mathbf{a}}{|\mathbf{c}||\mathbf{a}|}$
Also, it is given that $|\mathbf{a}|=|\mathbf{b}|=|\mathbf{c}|=\lambda$ (say), where $\lambda>0$.
Then, $\cos \alpha=\frac{\mathbf{a} \cdot \mathbf{b}}{\lambda^2} ; \cos \beta=\frac{\mathbf{b} \cdot \mathbf{c}}{\lambda^2}$ and $\cos \gamma=\frac{\mathbf{c} \cdot \mathbf{a}}{\lambda^2}$ $\Rightarrow \cos \alpha+\cos \beta+\cos \gamma=\frac{1}{\lambda^2}$

We know that,
$$
\begin{aligned}
& |\mathbf{a}+\mathbf{b}+\mathbf{c}|^2=(\mathbf{a}+\mathbf{b}+\mathbf{c}) \cdot(\mathbf{a}+\mathbf{b}+\mathbf{c}) \\
= & {\left[|\mathbf{a}|^2+|\mathbf{b}|^2+|\mathbf{c}|^2+2(\mathbf{a} \cdot \mathbf{b}+\mathbf{b} \cdot \mathbf{c}+\mathbf{c} \cdot \mathbf{a})\right] } \\
\Rightarrow & {\left[\lambda^2+\lambda^2+\lambda^2+2(\mathbf{a} \cdot \mathbf{b}+\mathbf{b} \cdot \mathbf{c}+\mathbf{c} \cdot \mathbf{a})\right] \geq 0 } \\
& \quad\left[\because|\mathbf{a}+\mathbf{b}+\mathbf{c}|^2 \geq 0\right] \\
\Rightarrow & 2(\mathbf{a} \cdot \mathbf{b}+\mathbf{b} \cdot \mathbf{c}+\mathbf{c} \cdot \mathbf{a}) \geq-3 \lambda^2
\end{aligned}
$$
Now, from Eqs. (i) and (ii), we get
$$
\begin{aligned}
\cos \alpha+\cos \beta+\cos \gamma & \geq \frac{1}{\lambda^2}\left(-\frac{3}{2} \lambda^2\right) \\
& =-\frac{3}{2}
\end{aligned}
$$
Thus, the minimum value of $\cos \alpha+\cos \beta+\cos \gamma$ is $-\frac{3}{2}$.
Also, it is given that $|\mathbf{a}|=|\mathbf{b}|=|\mathbf{c}|=\lambda$ (say), where $\lambda>0$.
Then, $\cos \alpha=\frac{\mathbf{a} \cdot \mathbf{b}}{\lambda^2} ; \cos \beta=\frac{\mathbf{b} \cdot \mathbf{c}}{\lambda^2}$ and $\cos \gamma=\frac{\mathbf{c} \cdot \mathbf{a}}{\lambda^2}$ $\Rightarrow \cos \alpha+\cos \beta+\cos \gamma=\frac{1}{\lambda^2}$

We know that,
$$
\begin{aligned}
& |\mathbf{a}+\mathbf{b}+\mathbf{c}|^2=(\mathbf{a}+\mathbf{b}+\mathbf{c}) \cdot(\mathbf{a}+\mathbf{b}+\mathbf{c}) \\
= & {\left[|\mathbf{a}|^2+|\mathbf{b}|^2+|\mathbf{c}|^2+2(\mathbf{a} \cdot \mathbf{b}+\mathbf{b} \cdot \mathbf{c}+\mathbf{c} \cdot \mathbf{a})\right] } \\
\Rightarrow & {\left[\lambda^2+\lambda^2+\lambda^2+2(\mathbf{a} \cdot \mathbf{b}+\mathbf{b} \cdot \mathbf{c}+\mathbf{c} \cdot \mathbf{a})\right] \geq 0 } \\
& \quad\left[\because|\mathbf{a}+\mathbf{b}+\mathbf{c}|^2 \geq 0\right] \\
\Rightarrow & 2(\mathbf{a} \cdot \mathbf{b}+\mathbf{b} \cdot \mathbf{c}+\mathbf{c} \cdot \mathbf{a}) \geq-3 \lambda^2
\end{aligned}
$$

Now, from Eqs. (i) and (ii), we get
$$
\begin{aligned}
\cos \alpha+\cos \beta+\cos \gamma & \geq \frac{1}{\lambda^2}\left(-\frac{3}{2} \lambda^2\right) \\
& =-\frac{3}{2}
\end{aligned}
$$
Thus, the minimum value of $\cos \alpha+\cos \beta+\cos \gamma$ is $-\frac{3}{2}$.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.