Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are the angles of a cyclic quadrilateral taken in order, then $\cos A+\cos B+\operatorname{Cos} C+\operatorname{Cos} D=$
MathematicsTrigonometric Ratios & IdentitiesMHT CETMHT CET 2020 (20 Oct Shift 1)
Options:
  • A $-1$
  • B 1
  • C $\frac{1}{2}$
  • D 0
Solution:
2920 Upvotes Verified Answer
The correct answer is: 0
Since the quadrilateral $\mathrm{ABCD}$ is cyclic, we have
$\mathrm{A}+\mathrm{C}=180^{\circ}$ and $\mathrm{B}+\mathrm{D}=180^{\circ}$
$\therefore \cos \mathrm{A}=\cos \left(180^{\circ}-\mathrm{C}\right)=-\cos \mathrm{C}$
$\cos \mathrm{B}=\cos \left(180^{\circ}-\mathrm{D}\right) \quad=-\cos \mathrm{D}$
$\therefore \cos \mathrm{A}+\cos \mathrm{B}+\cos \mathrm{C}+\cos \mathrm{D}=0$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.