Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $a \neq b \neq c$, then one value of $x$ which satisfies the equation $\left|\begin{array}{ccc}0 & \mathrm{x}-\mathrm{a} & \mathrm{x}-\mathrm{b} \\ \mathrm{x}+\mathrm{a} & 0 & \mathrm{x}-\mathrm{c} \\ \mathrm{x}+\mathrm{b} & \mathrm{x}+\mathrm{c} & 0\end{array}\right|=0$ is given by
MathematicsDeterminantsNDANDA 2017 (Phase 1)
Options:
  • A a
  • B $\mathrm{b}$
  • C $\mathrm{c}$
  • D 0
Solution:
2638 Upvotes Verified Answer
The correct answer is: 0
$\left|\begin{array}{ccc}0 & x-a & x-b \\ x+a & 0 & x-c \\ x+b & x+c & 0\end{array}\right|=0$
We know, the value of symmetric matrix's determinant is $0\left|\begin{array}{ccc}0 & -a & -b \\ a & 0 & -c \\ b & c & 0\end{array}\right|=0$
In the given matrix, determinant is 0, if $x=0$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.