Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $(a+b x)^{-3}=\frac{1}{27}+\frac{1}{3} x+\ldots$, then the ordered pair $(a, b)$ equals to
MathematicsBinomial TheoremTS EAMCETTS EAMCET 2014
Options:
  • A $(3,-27)$
  • B $\left(1, \frac{1}{3}\right)$
  • C $(3,9)$
  • D $(3,-9)$
Solution:
1869 Upvotes Verified Answer
The correct answer is: $(3,-9)$
$$
\begin{aligned}
\text { Now, }(a+b x)^{-3} & =a^{-3}\left(1+\frac{b x}{a}\right)^{-3} \\
& =\frac{1}{a^3}\left(1-{ }^3 C_1\left(\frac{b x}{a}\right)+\ldots\right) \\
\Rightarrow \quad \frac{1}{a^3} & -{ }^3 C_1 \frac{1}{a^3}\left(\frac{b x}{a}\right)+\ldots \\
& =\frac{1}{27}+\frac{1}{3} x
\end{aligned}
$$
(given)
On equating constant and $x$, we get
$$
\frac{1}{a^3}=\frac{1}{27}
$$
$\begin{array}{rlrl}\text { and } & -{ }^3 C_1 \frac{1}{a^3}\left(\frac{b}{a}\right) & =\frac{1}{3} \\ \Rightarrow & r l r l \\ \text { and } & -{ }^3 C_1\left(\frac{1}{3^4}\right) \times b & =\frac{1}{3} \\ \Rightarrow & -3 \times \frac{1}{3^4} b & =\frac{1}{3} \\ & \Rightarrow & -b & =3^2 \Rightarrow b=-9 \\ & \therefore & (a, b) & =(3,-9)\end{array}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.