Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\int_a^b x^3 d x=0$ and if $\int_a^b x^2 d x=\frac{2}{3}$, then $a$ and $b$ are respectively
MathematicsDefinite IntegrationMHT CETMHT CET 2022 (05 Aug Shift 1)
Options:
  • A $1,-1$
  • B $-1,-1$
  • C 1,1
  • D -1,1
Solution:
2034 Upvotes Verified Answer
The correct answer is: -1,1
$\begin{aligned} & \int_a^b x^3 d x=0 \text { and } \int_a^b x^2 d x=\frac{2}{3} \\ & \Rightarrow\left[\frac{x^4}{4}\right]_a^b=0 \text { and }\left[\frac{x^3}{3}\right]_a^b=\frac{2}{3} \\ & \Rightarrow \frac{b^4}{4}-\frac{a^4}{4}=0 \text { and } \frac{b^3}{3}-\frac{a^3}{3}=\frac{2}{3} \\ & \Rightarrow a^4=b^4 \text { and } b^3-a^3=2\end{aligned}$
which is satisfied by $\mathrm{a}=-1$ and $\mathrm{b}=1$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.