Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If ab,xnπ,nZ and y2=a2cos2x+b2sin2x, then d2ydx2+y=
MathematicsDifferentiationAP EAMCETAP EAMCET 2019 (21 Apr Shift 2)
Options:
  • A aby2
  • B 1yaby2
  • C (ab)2y
  • D aby3
Solution:
1115 Upvotes Verified Answer
The correct answer is: 1yaby2

It is given that,

ab,xnπ,nz and y2=a2cos2x+b2sin2x

Differentiate the above equation w.r.t. x,

2ydydx=-a2sin2x+b2sin2x

2ydydx=b2-a2sin2x

Again differentiate the above equation w.r.t. x,

2yd2ydx2+dydx2=2b2-a2cos2x

yd2ydx2+dydx2=b2-a2cos2x

Multiply y2 on both sides,

y3d2ydx2+y2dydx2=y2b2-a2cos2x

y3d2ydx2=y2b2-a2cos2x-y2dydx2

Add y4 in the above equation.

y4+y3d2ydx2=y4+y2b2-a2cos2x-y2dydx2

Substitute the values in the above equation.

y4+y3d2ydx2=y4+y2b2-a2cos2x-y2dydx2

=a2cos2x+b2sin2xb2-a2cos2x-sin2x-b2-a2sinxcosx2+a2cos2x+b2sin2x2

=a2b2cos4x+a2b2sin2x+2a2b2sin2xcos2x

=a2b2sin2x+cos2x2

=a2b2

Or it can be written as,

d2ydx2+y=1yaby2

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.