Search any question & find its solution
Question:
Answered & Verified by Expert
If $A B C D E F$ is a regular hexagon with $\mathbf{A B}=\mathbf{a}$ and $\mathbf{B C}=\mathbf{b}$, then $\mathbf{C E}$ equals to
Options:
Solution:
2022 Upvotes
Verified Answer
The correct answer is:
$\mathbf{b}-2 \mathbf{a}$
Given, $A B C D E F$ is a regular hexagon
$\mathbf{A B}=\mathbf{a}, \mathbf{B C}=\mathbf{b}$

$\begin{aligned} & \mathbf{A C}=\mathbf{a}+\mathbf{b} \\ & \mathbf{A B}=2 \mathbf{b} \\ & \mathbf{C D}=\mathbf{A D}-\mathbf{A C}=2 \mathbf{b}-\mathbf{a}-\mathbf{b}=\mathbf{b}-\mathbf{a} \\ & \mathbf{D E}=\mathbf{- a}\end{aligned}$
$\therefore \quad \mathbf{C E}=\mathbf{C D}+\mathrm{DE}=\mathbf{b}-\mathbf{a}-\mathbf{c}=\mathbf{b}-2 \mathbf{a}$
$\mathbf{A B}=\mathbf{a}, \mathbf{B C}=\mathbf{b}$

$\begin{aligned} & \mathbf{A C}=\mathbf{a}+\mathbf{b} \\ & \mathbf{A B}=2 \mathbf{b} \\ & \mathbf{C D}=\mathbf{A D}-\mathbf{A C}=2 \mathbf{b}-\mathbf{a}-\mathbf{b}=\mathbf{b}-\mathbf{a} \\ & \mathbf{D E}=\mathbf{- a}\end{aligned}$
$\therefore \quad \mathbf{C E}=\mathbf{C D}+\mathrm{DE}=\mathbf{b}-\mathbf{a}-\mathbf{c}=\mathbf{b}-2 \mathbf{a}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.