Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If a body is heated to $110^{\circ} \mathrm{C}$ and placed in air at $10^{\circ} \mathrm{C}$ after 1 hour its temperature is $60^{\circ} \mathrm{C}$, then the additional time required for it to cool to $30^{\circ} \mathrm{C}$ is
MathematicsDifferential EquationsMHT CETMHT CET 2022 (11 Aug Shift 1)
Options:
  • A $\frac{\log 5}{\log 2} \mathrm{hrs}$
  • B $\frac{\log 2}{\log 5} \mathrm{hrs}$
  • C $\left(\frac{\log 5}{\log 2}-1\right) \mathrm{hrs}$
  • D $\left(\frac{\log 5}{\log 2}+1\right) \mathrm{hrs}$
Solution:
1331 Upvotes Verified Answer
The correct answer is: $\left(\frac{\log 5}{\log 2}-1\right) \mathrm{hrs}$
$\begin{aligned}
& \frac{\mathrm{d} T}{\mathrm{~d} t}=-K(T-10) \\
& \Rightarrow T-10=e^{-k t+C} \\
& \Rightarrow T=10+e^C \cdot e^{-k t}
\end{aligned}$
For $t=0$,
$\begin{aligned}
& T=110 \\
& \Rightarrow e^C=100 \text { i.e. } \\
& T=10+100 \cdot e^{-k t}
\end{aligned}$
For $t=1$,
$\begin{aligned}
& T=60 \\
& \Rightarrow 60=10+100 \cdot e^{-k \times 1} \\
& \Rightarrow-k=\log \frac{1}{2} \\
& \Rightarrow k=\log 2
\end{aligned}$
$\Rightarrow T=10+100 \cdot e^{-\left(\log _2\right) t}$
Putting $T=30$
$\begin{aligned}
& 30=10+100 \cdot e^{-\left(\log _2\right) t} \\
& \Rightarrow \log \left(\frac{1}{5}\right)=-(\log 2) t \\
& \Rightarrow t=\frac{\log 5}{\log 2}
\end{aligned}$
Additional time $=t-1=\frac{\log 5}{log2}-1$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.