Search any question & find its solution
Question:
Answered & Verified by Expert
If a capillary tube of radius $1 \mathrm{~mm}$ is immersed in water, the mass of water rising in the capillary tube is $\mathrm{m}$. If the radius of the capillary tube is doubled, then the mass of water that rises in the same capillary tube will be
Options:
Solution:
2360 Upvotes
Verified Answer
The correct answer is:
$2 \mathrm{~m}$
For capillary rise, $h_1 r_1=h_2 r_2$
$\therefore \frac{h_2}{h_1}=\frac{r_1}{r_2}=\frac{1}{2}$
And $m=\pi r^2 h_1 \rho$ and $M=p(2 r)^2 \times h_2 \times \rho$
$\begin{aligned} & \therefore \frac{M^{\prime}}{M}=\left(\frac{2 r}{r}\right)^2 \times\left(\frac{1}{2}\right)=4 \times \frac{1}{2}=2 \\ & \therefore M=2 \mathrm{~m}\end{aligned}$
$\therefore \frac{h_2}{h_1}=\frac{r_1}{r_2}=\frac{1}{2}$
And $m=\pi r^2 h_1 \rho$ and $M=p(2 r)^2 \times h_2 \times \rho$
$\begin{aligned} & \therefore \frac{M^{\prime}}{M}=\left(\frac{2 r}{r}\right)^2 \times\left(\frac{1}{2}\right)=4 \times \frac{1}{2}=2 \\ & \therefore M=2 \mathrm{~m}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.