Search any question & find its solution
Question:
Answered & Verified by Expert
If $\mathrm{A}=\left(\cos 12^{\circ}-\cos 36^{\circ}\right)\left(\sin 96^{\circ}+\sin 24^{\circ}\right)$
and $\mathrm{B}=\left(\sin 60^{\circ}-\sin 12^{\circ}\right)\left(\cos 48^{\circ}-\cos 72^{\circ}\right)$, then what is
$\frac{\mathrm{A}}{\mathrm{B}}$ equal to?
Options:
and $\mathrm{B}=\left(\sin 60^{\circ}-\sin 12^{\circ}\right)\left(\cos 48^{\circ}-\cos 72^{\circ}\right)$, then what is
$\frac{\mathrm{A}}{\mathrm{B}}$ equal to?
Solution:
2659 Upvotes
Verified Answer
The correct answer is:
0
Given A=\left(\cos 12^{\circ}-\cos 36^{\circ}\right)\left(\sin 96^{\circ}+\sin 24^{\circ}\right) \\
B=\left(\sin 60^{\circ}-\sin 12^{\circ}\right)\left(\cos 48^{\circ}-\cos 72^{\circ}\right) \\
& \frac{A}{B}=\frac{\left[2 \sin 24^{\circ} \sin 12^{\circ}\right]\left[2 \sin 60^{\circ} \cos 36^{\circ}\right]}{\left[2 \cos 36^{\circ} \sin 24^{\circ}\right]\left[2 \sin 60^{\circ} \sin 12^{\circ}\right]} \\
& \Rightarrow \frac{A}{B}=1 \\
B=\left(\sin 60^{\circ}-\sin 12^{\circ}\right)\left(\cos 48^{\circ}-\cos 72^{\circ}\right) \\
& \frac{A}{B}=\frac{\left[2 \sin 24^{\circ} \sin 12^{\circ}\right]\left[2 \sin 60^{\circ} \cos 36^{\circ}\right]}{\left[2 \cos 36^{\circ} \sin 24^{\circ}\right]\left[2 \sin 60^{\circ} \sin 12^{\circ}\right]} \\
& \Rightarrow \frac{A}{B}=1 \\
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.