Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{A}=\left(\cos 12^{\circ}-\cos 36^{\circ}\right)\left(\sin 96^{\circ}+\sin 24^{\circ}\right)$
and $\mathrm{B}=\left(\sin 60^{\circ}-\sin 12^{\circ}\right)\left(\cos 48^{\circ}-\cos 72^{\circ}\right)$, then what is
$\frac{\mathrm{A}}{\mathrm{B}}$ equal to?
MathematicsTrigonometric Ratios & IdentitiesNDANDA 2016 (Phase 1)
Options:
  • A $-1$
  • B 1
  • C 0
  • D 2
Solution:
2659 Upvotes Verified Answer
The correct answer is: 0
Given A=\left(\cos 12^{\circ}-\cos 36^{\circ}\right)\left(\sin 96^{\circ}+\sin 24^{\circ}\right) \\
B=\left(\sin 60^{\circ}-\sin 12^{\circ}\right)\left(\cos 48^{\circ}-\cos 72^{\circ}\right) \\
& \frac{A}{B}=\frac{\left[2 \sin 24^{\circ} \sin 12^{\circ}\right]\left[2 \sin 60^{\circ} \cos 36^{\circ}\right]}{\left[2 \cos 36^{\circ} \sin 24^{\circ}\right]\left[2 \sin 60^{\circ} \sin 12^{\circ}\right]} \\
& \Rightarrow \frac{A}{B}=1 \\

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.