Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ -\sin \theta & -\cos \theta\end{array}\right]$, then $A^{-1}=$
MathematicsMatricesMHT CETMHT CET 2020 (12 Oct Shift 2)
Options:
  • A $\left[\begin{array}{cc}-\sin \theta & -\cos \theta \\ -\cos \theta & \sin \theta\end{array}\right]$
  • B $\left[\begin{array}{cc}\sin \theta & -\cos \theta \\ \cos \theta & -\sin \theta\end{array}\right]$
  • C $\left[\begin{array}{cc}-\cos \theta & \sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$
  • D $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ -\sin \theta & -\cos \theta\end{array}\right]$
Solution:
1554 Upvotes Verified Answer
The correct answer is: $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ -\sin \theta & -\cos \theta\end{array}\right]$
We have $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ -\sin \theta & -\cos \theta\end{array}\right] \Rightarrow \operatorname{adj} A=\left[\begin{array}{cc}-\cos \theta & \sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$
$|A|=\left|\begin{array}{cc}\cos \theta & -\sin \theta \\ -\sin \theta & -\cos \theta\end{array}\right|=-\cos ^{2} \theta-\sin ^{2} \theta=-\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=-1$
$\therefore A^{-1}=\frac{1}{(-1)}\left[\begin{array}{cc}-\cos \theta & \sin \theta \\ \sin \theta & \cos \theta\end{array}\right]=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ -\sin \theta & -\cos \theta\end{array}\right]$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.