Search any question & find its solution
Question:
Answered & Verified by Expert
If $A=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$, then show that
$$
A^2=\left[\begin{array}{cc}
\cos _2 \alpha & \sin _2 \alpha \\
-\sin _2 \alpha & \cos _2 \alpha
\end{array}\right]
$$
$$
A^2=\left[\begin{array}{cc}
\cos _2 \alpha & \sin _2 \alpha \\
-\sin _2 \alpha & \cos _2 \alpha
\end{array}\right]
$$
Solution:
1485 Upvotes
Verified Answer
\begin{aligned}
\mathrm{A}^2 &=\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right]\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right] \\
&=\left[\begin{array}{cc}
\cos ^2 \alpha-\sin ^2 \alpha & \sin \alpha \cos \alpha+\sin \alpha \cos \alpha \\
-\sin \alpha \cos \alpha-\sin \alpha \cos \alpha & -\sin ^2 \alpha+\cos ^2 \alpha
\end{array}\right] \\
&=\left[\begin{array}{cc}
\cos 2 \alpha & \sin 2 \alpha \\
-\sin 2 \alpha & \cos 2 \alpha
\end{array}\right]
\end{aligned}
$$
\mathrm{A}^2 &=\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right]\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right] \\
&=\left[\begin{array}{cc}
\cos ^2 \alpha-\sin ^2 \alpha & \sin \alpha \cos \alpha+\sin \alpha \cos \alpha \\
-\sin \alpha \cos \alpha-\sin \alpha \cos \alpha & -\sin ^2 \alpha+\cos ^2 \alpha
\end{array}\right] \\
&=\left[\begin{array}{cc}
\cos 2 \alpha & \sin 2 \alpha \\
-\sin 2 \alpha & \cos 2 \alpha
\end{array}\right]
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.