Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $a d-b c \neq 0$, then the area (in sq. units) of the parallelogram formed by the lines $a x+b y+2=0, a x+b y+5=0, c x+d y+3=0$ and $c x+d y+7=0$ is
MathematicsStraight LinesAP EAMCETAP EAMCET 2018 (23 Apr Shift 1)
Options:
  • A $\frac{1}{|a d-b c|}$
  • B $\frac{5}{|a d-b c|}$
  • C $\frac{7}{|a d-b c|}$
  • D $\frac{12}{|a d-b c|}$
Solution:
1814 Upvotes Verified Answer
The correct answer is: $\frac{12}{|a d-b c|}$
We have, $a x+b y+2=0$ and $a x+b y+5=0$ are parallel lines.
$$
a x+b y+2=0 \Rightarrow y=\frac{-a}{b} x-\frac{2}{b}
$$
and $a x+b y+5=0 \Rightarrow y=\frac{-a}{b} x \frac{-5}{b}$
So, $m_1=\frac{-a}{b}, c_1=\frac{-2}{b}, c_2=-\frac{5}{b}$
Now, again
$$
\begin{aligned}
& \qquad x+d y+3=0 \Rightarrow y=\frac{-c}{d} x-\frac{3}{d} \\
& \text { and } c x+d y+7=0 \Rightarrow y=\frac{-c}{d} x-\frac{7}{d}
\end{aligned}
$$
So, $m_2=\frac{-c}{d}, d_1=\frac{-3}{d}, d_2=\frac{-7}{d}$
Then, area of parallelogram $=\left|\frac{\left(c_1-c_2\right)\left(d_1-d_2\right)}{m_1-m_2}\right|$
$$
\begin{aligned}
& =\left|\frac{\left(\frac{-2}{b}+\frac{5}{b}\right)\left(\frac{-3}{d}+\frac{7}{d}\right)}{-\frac{a}{b}+\frac{c}{d}}\right| \\
& =\left|\frac{\frac{3}{b} \times \frac{4}{d}}{\frac{-(a d-b c)}{b d}}\right|=\left|\frac{-12}{a d-b c}\right|=\frac{12}{|a d-b c|} .
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.