Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If a differentiable function $\mathrm{f}$ defined for $\mathrm{x}>0$ satisfies the relation $\mathrm{f}\left(\mathrm{x}^{2}\right)=\mathrm{x}^{3}, \mathrm{x}>0$, then what is the value of $\mathrm{f}^{\prime}(4) ?$
MathematicsApplication of DerivativesNDANDA 2017 (Phase 2)
Options:
  • A 1
  • B 2
  • C 3
  • D 4
Solution:
1608 Upvotes Verified Answer
The correct answer is: 3
According to given relation.
$\because \mathrm{f}\left(\mathrm{x}^{2}\right)=\mathrm{x}^{3}$
Putting $\mathrm{x}=\sqrt{\mathrm{x}}$
$\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{x}^{3 / 2}$
Differentiating both the sides,
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{3}{2} \mathrm{x}^{1 / 2}$
$\Rightarrow \quad f^{\prime}(4)=\frac{3}{2} \cdot 4^{1 / 2}=\frac{3}{2}(2)=3$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.