Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $A$ does not belong to the first quadrant, $B$ does not belong to the second quadrant, $\sin A=\frac{11}{61}$ and $\cos B=\frac{-7}{25}$, then $A-B$ and $A+B$ lie respectively in the quadrants
MathematicsTrigonometric Ratios & IdentitiesTS EAMCETTS EAMCET 2020 (10 Sep Shift 2)
Options:
  • A 1,2
  • B 2,3
  • C 3,4
  • D 4,1
Solution:
1090 Upvotes Verified Answer
The correct answer is: 4,1
Given,
$\sin A=\frac{11}{61} A$ lies in 2 nd quadrant
$\cos B=\frac{-7}{25} B$ lies in 3rd quadrant
$\cos A=\frac{-60}{61}$ and $\sin B=\frac{-24}{25}$
$\because \sin (A-B)=\sin A \cos B-\cos A \sin B$
$=\left(\frac{11}{61}\right)\left(\frac{-7}{25}\right)-\left(\frac{-60}{61}\right)\left(\frac{-24}{25}\right)$
$\sin (A-B) < 0$
$\cos (A-B)=\cos A \cos B+\sin A \sin B$
$=\left(\frac{-7}{25}\right)\left(\frac{-60}{61}\right)+\left(\frac{11}{61}\right)\left(\frac{-24}{25}\right)$
$\cos (A-B)>0$
$\because A-B$ lie in 4 th quadrant
$\sin (A+B)=\left(\frac{11}{61}\right)\left(\frac{-7}{25}\right)+\left(\frac{-60}{61}\right)\left(\frac{-24}{25}\right)$
$\sin (A+B)>0$
$\cos (A+B)=\left(\frac{-7}{25}\right)\left(\frac{-60}{61}\right)-\left(\frac{11}{61}\right)\left(\frac{-24}{25}\right)$
$\cos (A+B)>0$
$\therefore(A+B)$ lies in Ist quadrant

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.