Search any question & find its solution
Question:
Answered & Verified by Expert
If a focal chord of the ellipse $\frac{x^2}{25}+\frac{y^2}{16}=1$ meets its minor axis at the point $(0,3)$, then the perpendicular distance from the centre of the ellipse to this focal chord is
Options:
Solution:
1679 Upvotes
Verified Answer
The correct answer is:
$\frac{3}{\sqrt{2}}$

Let $A=(0,3)$
Given the ellipse, $\frac{x^2}{25}+\frac{y^2}{16}=1$
So focus of the ellipse $F=\left(\sqrt{5^2-4^2}, 0\right)$
$\Rightarrow \mathrm{F}=(3,0), \mathrm{P}\left(\frac{0+3}{2}, \frac{3+0}{2}\right)=\left(\frac{3}{2}, \frac{3}{2}\right)$
So required distance $=\sqrt{\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^2}=\sqrt{\frac{18}{4}}$
$=\sqrt{\frac{9}{2}}=\frac{3}{\sqrt{2}}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.