Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If a function $f(x)$ is given by

$f(x)=\frac{x}{1+x}+\frac{x}{(x+1)(2 x+1)}$

$+\frac{x}{(2 x+1)(3 x+1)}+\ldots, \infty$, then at $x=0, f(x)$
MathematicsContinuity and DifferentiabilityBITSATBITSAT 2015
Options:
  • A has no limit
  • B is not continuous
  • C is continuous but not differentiable
  • D is differentiable
Solution:
1927 Upvotes Verified Answer
The correct answer is: is not continuous
Let

$f(x)=\frac{x}{1+x}+\frac{x}{(x+1)(2 x+1)}+\frac{x}{(2 x+1)(3 x+1)}+\ldots \infty$

$=\lim _{n \rightarrow \infty} \sum_{r=1}^{n} \frac{x}{[(r-1) x+1](r x+1)}$

$=\lim _{x \rightarrow \infty} \sum_{\mathrm{r}=1}^{\mathrm{n}}\left[\frac{\mathrm{x}}{[(\mathrm{r}-1) \mathrm{x}+1]}-\frac{1}{\mathrm{rx}+1}\right]$

$=\lim _{n \rightarrow \infty}\left[1-\frac{1}{n x+1}\right]=1$

For $x=0,$ we have $f(x)=0$

Thus, we have $f(x)=\left\{\begin{array}{ll}1, & x \neq 0 \\ 0, & x=0\end{array}\right.$

Clearly, $\lim _{x \rightarrow 0^{-}} \mathrm{f}(\mathrm{x})=\lim _{\mathrm{x} \rightarrow 0^{+}} \mathrm{f}(\mathrm{x}) \neq \mathrm{f}(0)$

So, $\mathrm{f}(\mathrm{x})$ is not continuous at $\mathrm{x}=0$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.