Search any question & find its solution
Question:
Answered & Verified by Expert
If $\bar{a}=\hat{i}+2 \hat{j}+\hat{k}, \bar{b}=\hat{i}-\hat{j}+\hat{k}, \bar{c}=\hat{i}+\hat{j}-\hat{k}$, then a vector in the plane of $\bar{a}$ and $\bar{b}$, whose projection on $\overline{\mathrm{c}}$ is $\frac{1}{\sqrt{3}}$, is
Options:
Solution:
2427 Upvotes
Verified Answer
The correct answer is:
$4 \hat{\mathrm{i}}-\hat{\mathrm{j}}+4 \hat{\mathrm{k}}$
Let $\overline{\mathrm{r}}$ be the vector coplanar to $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$. Then,
$\begin{aligned}
\overline{\mathrm{r}} & =\overline{\mathrm{a}}+\mathrm{m} \overline{\mathrm{b}} \\
& =(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}})+\mathrm{m}(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}) \\
& =\hat{\mathrm{i}}(1+\mathrm{m})+\hat{\mathrm{j}}(2-\mathrm{m})+\hat{\mathrm{k}}(1+\mathrm{m})
\end{aligned}$
Since the projection of $\overline{\mathrm{r}}$ along $\overline{\mathrm{c}}$ is $\frac{1}{\sqrt{3}}$,
$\begin{aligned}
& \frac{\overline{\mathrm{r}} \cdot \overline{\mathrm{c}}}{\overline{\mathrm{c}}}= \pm \frac{1}{\sqrt{3}} \\
& \Rightarrow \frac{(1+\mathrm{m})+(2-\mathrm{m})-(1+\mathrm{m})}{\sqrt{3}}= \pm \frac{1}{\sqrt{3}} \\
& \Rightarrow(1+\mathrm{m})+(2-\mathrm{m})-(1+\mathrm{m})= \pm 1 \\
\therefore \quad & \mathrm{m}=3 \text { or } \mathrm{m}=1
\end{aligned}$
Substituting $\mathrm{m}=3$ in equation (i), we get
$\begin{aligned}
& \overline{\mathrm{r}}=\hat{\mathrm{i}}(1+3)+\hat{\mathrm{j}}(2-3)+\hat{\mathrm{k}}(1+3) \\
& \Rightarrow \overline{\mathrm{r}}=4 \hat{\mathrm{i}}-\hat{\mathrm{j}}+4 \hat{\mathrm{k}}
\end{aligned}$
$\begin{aligned}
\overline{\mathrm{r}} & =\overline{\mathrm{a}}+\mathrm{m} \overline{\mathrm{b}} \\
& =(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}})+\mathrm{m}(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}) \\
& =\hat{\mathrm{i}}(1+\mathrm{m})+\hat{\mathrm{j}}(2-\mathrm{m})+\hat{\mathrm{k}}(1+\mathrm{m})
\end{aligned}$
Since the projection of $\overline{\mathrm{r}}$ along $\overline{\mathrm{c}}$ is $\frac{1}{\sqrt{3}}$,
$\begin{aligned}
& \frac{\overline{\mathrm{r}} \cdot \overline{\mathrm{c}}}{\overline{\mathrm{c}}}= \pm \frac{1}{\sqrt{3}} \\
& \Rightarrow \frac{(1+\mathrm{m})+(2-\mathrm{m})-(1+\mathrm{m})}{\sqrt{3}}= \pm \frac{1}{\sqrt{3}} \\
& \Rightarrow(1+\mathrm{m})+(2-\mathrm{m})-(1+\mathrm{m})= \pm 1 \\
\therefore \quad & \mathrm{m}=3 \text { or } \mathrm{m}=1
\end{aligned}$
Substituting $\mathrm{m}=3$ in equation (i), we get
$\begin{aligned}
& \overline{\mathrm{r}}=\hat{\mathrm{i}}(1+3)+\hat{\mathrm{j}}(2-3)+\hat{\mathrm{k}}(1+3) \\
& \Rightarrow \overline{\mathrm{r}}=4 \hat{\mathrm{i}}-\hat{\mathrm{j}}+4 \hat{\mathrm{k}}
\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.