Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{i}}=\overrightarrow{\mathbf{a}} \cdot(\hat{\mathbf{i}}+\hat{\mathbf{j}})=\overrightarrow{\mathbf{a}} \cdot(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})=1$ then $\overrightarrow{\mathbf{a}}$ is equal to
MathematicsVector AlgebraKCETKCET 2008
Options:
  • A $\hat{\mathbf{i}}+\hat{\mathbf{j}}$
  • B $\hat{\mathbf{i}}-\hat{\mathbf{k}}$
  • C $\hat{\mathbf{i}}$
  • D $\hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$
Solution:
1250 Upvotes Verified Answer
The correct answer is: $\hat{\mathbf{i}}$
Let $\overrightarrow{\mathbf{a}}=\mathrm{a}_{1} \hat{\mathbf{i}}+\mathrm{a}_{2} \hat{\mathbf{j}}+\mathrm{a}_{3} \hat{\mathbf{k}}$
Given, $\overrightarrow{\mathbf{a}} \cdot \hat{\mathbf{i}}=\overrightarrow{\mathbf{a}} \cdot(\hat{\mathbf{i}}+\hat{\mathbf{j}})=\overrightarrow{\mathbf{a}} \cdot(\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}})=1$
$\therefore \quad \mathrm{a}_{1}=\mathrm{a}_{1}+\mathrm{a}_{2}=\mathrm{a}_{1}+\mathrm{a}_{2}+\mathrm{a}_{3}=1$
$\Rightarrow \quad \mathrm{a}_{1}=1, \mathrm{a}_{2}=0, \mathrm{a}_{3}=0$
$\therefore \quad \overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.